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Abstract. We use the available information on the ratio between the electric and magnetic proton form fac-
tors coming from recently published space-like data and from the few available time-like data. We apply
a dispersive procedure on these data to evaluate the behavior of this ratio, as a complex function, for all
values of q2.

1 Introduction

The electromagnetic form factors (ff’s) are essential pieces
of our knowledge of the internal structure of the nucleon,
and this fact justifies the efforts devoted to their determin-
ation. They are complex functions of the squared momen-
tum transfer in the photon–nucleon vertex, defined both
for space-like (q2 < 0) and time-like (q2 > 0) momenta. The
interest in the study of the nucleon ff’s has been recently
renewed [1, 2] by the unexpected Jlab results on the ratio

R(q2) = µp
GpE(q

2)

GpM(q
2)
, (1)

where µp is the proton’s magnetic moment and G
p
E and

GpM are the electric and magnetic proton ff’s. A decrease
of R(q2) as space-like

∣
∣q2
∣
∣ increases [3] has been found,

in contrast with the flat behavior R(q2) ≈ 1 [4] obtained
up to q2 ≈ −7 GeV2 by using the traditional Rosenbluth
method [5]. It has to be mentioned that the Iachello–
Jackson–Lande (IJL) nucleon ff’s model [6, 7], somehow
related to soliton models of the nucleon [8], predicted the
decrease ofR(q2) more than thirty years ago. Recently this
model [7] and other QCD based models [1, 9, 10] have been
extrapolated to time-like positive q2. While they agree
within the experimental errors in the space-like region,
they disagree in some respect for time-like q2. In all these
models the space-like q2 variation is related to a cancella-
tion between the Dirac, F p1 (q

2), and the Pauli, F p2 (q
2), ff’s.
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Then, since we have

GpE(q
2) = F p1 (q)+ τF

p
2 (q

2),

GpM(q
2) = F p1 (q)+F

p
2 (q

2),
τ =

q2

4M2p
, (2)

such a cancellation should become an enhancement once
q2 (i.e. τ) changes sign from negative to positive time-
like values. As a consequence the angular distribution of
the outgoing nucleon in e+e− → NN processes should
have a large sin2(θ) term proportional to

∣
∣R(q2)

∣
∣
2
. At the

same time, a large transverse polarization of the outgo-
ing nucleon [11] is predicted [1], but the sign and the q2-
dependence strongly depend on the models.
In principle, time-like ff’s could be evaluated from the

space-like ones by means of dispersion relations (DR’s), if
they are smooth enough and if space-like data were known
with very high accuracy or if in the time-like region there
are some data or suitable constraints [12–14]. In fact, an-
alytic functions are supposed to describe at the same time
space-like and time-like electric and magnetic ff’s. These
functions are defined in the whole q2 complex plane; in the
physical sheet they do not have isolated singularities, such
as poles, but a cut on the real axis starting at sπ = (2mπ)

2.
The Cauchy theorem allows one to relate the space-like
real values of a ff to an integral, over the time-like cut, of
its imaginary part, providing a DR among them. In the
unphysical region, 0 < q2 < 4M2p , not directly accessible
experimentally, each ff should have large bumps corres-
ponding to the unphysical excitations of �, ω, �′, ω′ and
all vector mesons whose masses are lower than 2Mp [15].
In terms of ff’s, these resonances are described by poles ly-
ing in the unphysical sheet of the q2 complex plane. In the
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ratio R(q2) the effects of these poles should be somewhat
smoothed out, being the same in both, GpE and G

p
M. Hence

R(q2) smoothness should be a plausible ansatz.
There are constraints to R(q2) for time-like q2, namely:

– a continuous transition is expected from space-like to
time-like q2;
– according to the Phragmèn–Lindelöff theorem the
space-like and time-like values of a ff must be asymptot-
ically real and equal in modulus[16–18];
– at q2 = sp ≡ (2Mp)2, the physical threshold of e+e−→
pp̄, assuming F p1 (q

2) and F p2 (q
2) analytic functions of

q2, it is R(sp) = µp; since in this q
2 region R(q2) is

a complex function, this is a constraint on both real and
imaginary part.

All the published data in the time-like region assumed∣
∣R(q2)

∣
∣ = µp not only at threshold [19–25], but in the

whole explored interval [26–28], essentially for lack of accu-
rate data concerning the angular distributions and of any
measurement of the outgoing nucleon polarization or any
use of polarized beams.
In this paper, the ratio R(q2) has been obtained in

a model independent way, assuming it has a smooth be-
havior, taking into account the theoretical constraints and
solving the DR by a minimization algorithm. The input
of this algorithm is given by the JLab and MIT-Bates po-
larization data [3, 29] in the space-like region and by the
result of a reanalysis of FENICE [19, 20], DM2 [21, 22] and
E835 [30] data in the time-like region. A preliminary ver-
sion [31] of this paper has been previously presented.
A very similar approach, even if with a different disper-

sive integral, has already been successfully tested on the
pion ff [13]. In short, the pion ff has been assumed to be
known in the space-like region and in the time-like region,
above sp only. Hence the DR has been reversed evaluating
the time-like pion ff below sp by means of a standard regu-
larization procedure used to solve first kind integral equa-
tions, that requires one free parameter only [32]. A very

Fig. 1. The full circles represent the
data from Jlab and MIT-Bates [3, 29],
while the two time-like intervals are
from FENICE [19, 20], DM2 [21, 22] and
E835 [30]. The stars are the theoret-
ical constraints and the lined area is the
unphysical region. The label R̃(q2) of
the ordinate axis is defined as R̃(q2) =
R(q2) for q2 ≤ sπ and R̃(q

2) =
∣
∣R(q2)

∣
∣

for q2 > sπ

good agreement has been obtained in this way, varying this
parameter within one order of magnitude. This procedure
has also been applied quite successfully to get the magnetic
nucleon ff’s in the unphysical region [13].

2 Space-like and time-like experimental data

The high intensity–high polarization electron beams avail-
able at JLab and MIT-Bates [3, 29] allowed the extraction
of the ratio between electric andmagnetic proton ff’s meas-
uring the electron-to-proton polarization transfer. These
measurements showed an almost linear decrease of R(Q2)
from unity at low Q2 ≡−q2 up to ≈ 0.3 at the highest Q2,
as shown in Fig. 1, in strong disagreement with previous
Rosenbluth measurements (see [4] and [33] for a compila-
tion of all the space-like data), that indicated approximate
ff scaling, i.e. R(Q2) ≈ 1, though with large uncertainties
in GpE at the highest Q

2 values. In the Rosenbluth meas-
urements, the ff’s are basically extracted fitting the linear
ε-dependence of the cross section at fixed Q2 (where ε is
the virtual photon polarization), but the presence of the
factor 1/τ [see (3)] in front of GpE(Q

2) makes difficult its
extraction when Q2 becomes large. Then, a possible ex-
perimental inconsistency could affect the Rosenbluth re-
sult, however a recent reanalysis [33] showed that the in-
dividual Rosenbluth measurements are consistent to each
other within a small normalization uncertainty between
the different experiments. In addition, the new Rosenbluth
measurements performed at JLab [34] confirmed the scal-
ing behavior of the old data for Q2 from 2.6 to 4.1 GeV2,
making it clear that the source of the discrepancy is not
simply experimental.
Recent theoretical works [35] have suggested that

terms, related to two-photon exchange corrections to the
lowest order QED diagram, may result in an incorrect de-
termination of the ff’s from the measured cross section,
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while polarization measurements should be less sensitive
to such corrections. As shown in [36], the Rosenbluth data
with the inclusion of two-photon exchange contribution
agree well with polarization data for Q2 between 2 and
3 GeV2, while there is at least partial reconciliation for
higher Q2. Once reliable calculations of these corrections
will be available, then polarization and cross section data
can be consistently combined to extract the ff’s without
ambiguity.
In our following analysis, we will make use of the ratio

R(Q2) as obtained from polarization measurements, since,
as discussed, these data are less sensitive to higher order
corrections and to systematic uncertainties.
The proton ff’s in the time-like region (q2 ≡ s > 0) can

be extracted from the cross section of the process e+e−→
pp or pp→ e+e−. The measurements available from both
kinds of experiments are shown in Fig. 2 as a function of the
center of mass energy s. Most of the data are concentrated
in the low s region close to the proton–antiproton thresh-
old [19–25], but a sizeable amount of data from proton–
antiproton annihilation experiments is also available for
center of mass energies s between 8 and 14 GeV2 [26–28].
The total cross section at a given s is related to the ff’s
|GpE(s)| and |G

p
M(s)| through the relation

σ(s) =
4πα2�(s)

3s

(

|GpM(s)|
2
+
2M2p
s
|GpE(s)|

2

)

, (3)

Fig. 2. Proton magnetic ff in the time-like region extracted
from the e+e−→ pp and pp→ e+e− cross sections assuming
∣
∣G
p
E(s)
∣
∣=
∣
∣G
p
M(s)

∣
∣. aAll data in logarithmic scale. b Data close

to sp = (2Mp)
2 in linear scale

where the factor �(s) is equal to Cβ = Cv/c (v is the pro-
ton velocity in the center of mass system) in the case of
e+e−→ pp and to β/C in the case of pp→ e+e− and C
is a Coulomb correction factor to take into account QED
bound states, relevant only very near threshold. In order
to extract the ff’s from the measured cross sections, each
experiment has to make an hypothesis on the modulus of
the ratio R(s). All the results published are obtained in
the hypothesis that this ratio, in modulus, is equal to µp
(|GpE(s)|= |G

p
M(s)|).

The possibility to disentangle |GpE(s)| and |G
p
M(s)| re-

lies on the measurement of the angular distributions. Call-
ing θ the polar angle of the emerging proton (or antipro-
ton) in the center of mass system in e+e−→ pp experi-
ments, or the polar angle of the electron (or positron) in
pp→ e+e− experiments, the differential cross section is

dσ

dΩ
=
α2�(s)

4s

[

|GpM(s)|
2
(1+cos2(θ))+

1

τ
|GpE(s)|

2
sin2(θ)

]

,

(4)

where τ = s/4M2p . This formula shows that the two ff’s give
rise to two terms: one, related to the magnetic ff, has a [1+
cos2(θ)]-dependence, the other one, related to the electric
ff has a sin2(θ)-dependence. In principle a measurement of
the angular distribution is able to give the relative weights
of the two terms and hence the ratio |R(s)|. A fit of the
cos(θ) distributions has been applied to two sets of data
corresponding to two different values of s.

1. The data from the FENICE [20] and DM2 [22] experi-
ments both detecting the process e+e−→pp at an aver-
age center of mass energy s= 4.51 GeV2 have been sim-
ultaneously fitted. The two measured differential cross
sections are in good agreement as shown in Fig. 3a.

2. Two sets of data from the E835 experiment [27, 28]
detecting the process pp→ e+e− both at s ∼ 12 GeV2

have also been fitted simultaneously. The angular dis-
tributions of the two data sets are shown in Fig. 3b
normalized to the average number of events per bin.

All the considered experiments are characterized by
limited statistics due to the small value of the cross sec-
tion (from ∼ 1 nb at sexp = 4.5 GeV2 down to ∼ 1 pb at
sexp = 12GeV2). In both cases the parameter |R|exp is ex-
tracted from a fit to the c.m. angular distribution with

f(cos(θ)) = τµ2pA
2(1+cos2(θ))+B2(1−cos2(θ)), (5)

and the ratio between the two coefficients B and A is
just |R|exp. In order to evaluate confidence intervals for
|R|exp, properly taking into account the unavoidable cor-
relations, the same fits have been applied on samples of
distributions randomly extracted from the experimental
ones. This procedure allows one to get directly the distri-
butions of |R|exp. These are not Gaussian, being in both
cases strongly asymmetric. Confidence intervals of 68%
(Rinf < |R|exp < Rsup) are built in such a way that the
probability P (|R|>Rsup) = P (|R|<Rinf) = 16%.
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Fig. 3. a Differential cross section as a function of | cos(θ)|
from FENICE [19, 20] (triangles) and DM2 [21, 22] (squares)
data at sexp = 4.5 GeV2, with fit superimposed. b Angular dis-
tributions for E835 1996 data (squares) and 2000 data [30]
(triangles) at sexp = 12.0 GeV2, with fit superimposed: the two
distributions are normalized to the same number of events per
unit of | cos(θ)|

The resulting intervals are

3.46< |R|exp < 26.5 (sexp = 4.5 GeV2),

0.34< |R|exp < 3.63 (sexp = 12.0GeV2).
(6)

These numbers could be modified by taking into ac-
count the contribution of two-photon exchange diagrams,
that should lead to an asymmetry in the angular distribu-
tion of the proton with respect to the antiproton. An effect
of the order of few percent could be estimated, also taking
into account that the γγ→ pp̄ cross section is of the same
order of magnitude as for e+e−→ pp̄ [37]. However, given
the experimental uncertainties in the determination of the
two intervals of (6), we do not expect that our final result
will be affected by these higher order corrections.

3 The dispersive approach

In order to connect the data on |R(s)| in the time-like re-
gion to those on R(t) in the space-like region (t = q2 < 0),
we use a very powerful mathematical tool, i.e. the DR’s for
the imaginary part. They have the form [16]

G(t) =
1

π

∫ ∞

sπ

ImG(s)

s− t
ds . (7)

Equation (7) establishes an integral relation between
the values of the ff in the space-like region, where this func-
tion is real since it describes the scattering process, and
its imaginary part in the time-like region, where the pro-
cess described is the annihilation and therefore the ff is
complex. If we assume that the magnetic proton ff GpM(q

2)
has no zeros, as it is demonstrated in [13], it follows that,
unless there is asymptotic behavior, the ratio R(q2) has
the same analytic properties as of each ff. This means that
we may apply the DR of (7) directly to R(q2). But, since
pQCD [17] constrains the ff’s GpE(q

2) and GpM(q
2) to be

asymptotically vanishing with the same power law (1/q2)2,
as q2 diverges, the ratio, unless there are logarithmic cor-
rections, should have a constant asymptotic time-like limit
and therefore the integral of (7), withR(s) instead ofG(s),
could be divergent. In order to account for this possibility
we perform the analytic continuation of R(q2) by means of
the DR for the imaginary part, subtracted at t= 0 [16]:

R(t) =R(0)+
t

π

∫ ∞

sπ

Im[R(s)]

s(s− t)
ds , (8)

which relates the space-like value of R(t) to its time-like
imaginary part, and

Re[R(s)] =R(0)+
s

π
P

∫ ∞

sπ

Im[R(s′)]

s′(s′− s)
ds′ , (9)

which, instead, connects the real and the imaginary parts
ofR(s) over the cut, i.e., for s≥ sπ (P denotes the principal
value). The price of the subtraction at t= 0 is the know-
ledge of the value of R(t) at the same point, but, thanks to
the normalization [see (1)], in the expressions (8) and (9)
we can put R(0) = 1.
Contrary to the existing models [1, 6, 7, 9, 10], which are

constructed starting from the space-like data and only sub-
sequently extended to other energies, we start from the
imaginary part of the ratio R(s), which is defined only in
the portion of the time-like region over the cut, and, by
means of a rigorous analytic continuation procedure, we
reconstruct the function R(q2) in the whole q2 complex
plane.
To parametrize the imaginary part we use a quite gen-

eral and model independent form, that is, two series of
orthogonal Chebyshev polynomials [16]:

ImR(s) =

⎧

⎪⎨

⎪⎩

∑

j CjTj(x)x=
2s−sp−sπ
sp−sπ

, sπ ≤ s≤ sp,

∑

j DjTj(y)y =
2sp
s
−1, s > sp,

(10)

with s ≥ sπ, the two vectors C = (C1, C2, . . . , CM ) and
D= (D1, D2, . . . , DN ) represent the coefficients and Tj(x)
is the j-th Chebyshev polynomial. The two series in (10)
cover two naturally separated intervals:

– the unphysical region [sπ, sp] with the vector meson res-
onances, where the ff’s cannot be measured;
– the experimentally accessible region (sp,∞), where the
asymptotic regime is attained.

Once Im[R(s)] is defined, R(q2) can be evaluated in the
full q2 range via (8) and (9). In order to find the C and
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D vectors we minimize a χ2 function that includes space-
like and time-like data together with the constraints dis-
cussed above. The resulting function has the correct ana-
lytic structure.
It is interesting to see how the theoretical constraints,

which can be imposed directly on the imaginary part of
R(q2), are essentially three nodes located at three critical
points, the theoretical thresholds sπ, the physical thresh-
old sp and the point at infinity, which are just the extremes
of the domains of the series.
In order to choose the values for N and M , the de-

grees of the two series, we have studied the χ2(N,M)
as a function of (N,M) in the parameter space ([3, 8]×
[4, 9]). In this space the χ2 has an absolute minimum for
(N,M) = (5, 6). Then, in the following, we will consider
only this case, also because it lies in a region of stability,
i.e., if we vary N and M by ±1 we obtain a result, which
is within the errors in agreement with that obtained for
(N,M) = (5, 6). The error, shown as a lined band in the
pictures, has been achieved using a Monte Carlo technique,
generating new sets of data, by means of Gaussian fluctua-
tions from the original.
More details on the minimization procedure are re-

ported in [38].
Concerning the dispersive procedure, it is interesting to

mention that, in addition to the one adopted here, there are
other forms of DR’s which connect space-like and time-like
data. For instance, the DR for the logarithmmay relate di-
rectly data on the modulus of a ff in the time-like region to
those for its real value in the space-like region [12, 13, 16].
This kind of logarithmic dispersive approach would not be
suitable in this case, not only because the time-like modu-
lus has not so many constraints as the imaginary part does,
but also because it is not able to forecast, in a model inde-
pendent way, the presence of a zero, that, instead, should
be one of the aims of this analysis.
In the pictures of Fig. 4 is shown our result for the ratio

R(q2), also in comparison with some existing models [1, 6,
7, 9, 10].
In particular the IJL model [6, 7] represents a surpris-

ingly accurate and early prediction of the space-like de-
creasing behavior of the ratio R(q2). However in these
models the transition from space-like ff’s to time-like ff’s

Fig. 4. a Result of the dispersive tech-
nique for the ratio R(q2) in the full
data region. The lined band represents
the error. b Ratio R(q2) in the time-
like region with q2 ≥ sp and comparison
among various models (Q2 ≡ −q2). As
in Fig. 1 the full circles are the data
from Jlab and MIT-Bates, while the two
time-like intervals are from FENICE,
DM2 and E835. The stars represent the
theoretical constraints. The label R̃(q2)
of the ordinate axis is defined as R̃(q2) =
R(q2) for q2 ≤ sπ and R̃(q

2) = |R(q2)|
for q2 > sπ

is essentially achieved by changing sign of q2 and adding
a phase. This recipe fulfills the analyticity requirement
asymptotically. Conversely, in our procedure the analyt-
icity in the whole q2-plane is the first feature. In fact we
parameterize directly the imaginary part of the ratioR(q2)
and then we extend the definition in the whole q2 com-
plex plane by means of a rigorous analytic continuation
technique based on the dispersion relations. The free pa-
rameters of this procedure are then fixed by using both
theoretical and experimental constraints. In light of this,
the function that comes out fulfills all the theoretical and
experimental conditions with a perfect analytic form.
We found, in a model independent way, a space-like

zero at q2 =−11±2 GeV2 (Fig. 4a). The comparison be-
tween the models previously described [1, 6, 7, 9, 10] and
our result, reported in Fig. 4b, shows that, in spite of the
agreement in the space-like region, where all these models
describe the polarization data, their continuations in the
time-like region are far each other. Another interesting out-
come of our computation is the space-like and time-like
asymptotic behavior of GpE(q

2)/GpM(q
2). According to the

Phragmèn–Lindelöff theorem, that we have implemented
by imposing a vanishing asymptotic value for the imagi-
nary part of R(q2), we achieved a real time-like limit for
the ratio as q2→ +∞. As shown in Fig. 5 (without and
with comparison with the other models) the space-like
and time-like asymptotic limits have in modulus the same
value, but they have opposite sign, i.e.

lim
q2→±∞

GpE(q
2)

GpM(q
2)
=±1 . (11)

The scaling law, providing GpE � G
p
M, that, in light of

the new polarization data, is no more valid at low |q2|, has
been in some way restored, even if in modulus and in a
“double” asymptotic regime. In addition, the Phragmèn–
Lindelöff theorem predicts for the phase

Φ(∞) = (Z−P )π , (12)

where Z and P are the number of zeros and poles of R(q2).
Since we haveR(−∞) = |R(∞)|eiΦ(∞) =−|R(∞)|, and be-
ing P = 0, we obtain a further confirmation of the presence
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Fig. 5. a Ratio GpE(q
2)/GpM(q

2) over

a wide range of q2. The lined band
represents the error. b The result is
compared with other models (same
references as Fig. 4) in logarithmic
scale for q2. The label G̃pE(q

2)/G̃pM(q
2)

of the ordinate axis is defined as
G̃
p
E(q
2)/G̃pM(q

2) =GpE(q
2)/GpM(q

2) for

q2 ≤ sπ and G̃
p
E(q
2)/G̃pM(q

2) =

|GpE(q
2)/GpM(q

2)| for q2 > sπ

of a zero of R(q2) (or at least an odd number of zeros). As
a direct consequence of the limit of (11), we give also a pre-
diction (Fig. 6) for the ratio between Pauli and Dirac ff’s:

lim
q2→∞

τ
F p2 (q

2)

F p1 (q
2)
=−0.2±0.3 , (13)

therefore F p2 (q
2)/F p1 (q

2) scales at least like (1/q2) as q2 di-
verges.
The complete knowledge of the functionR(q2) allows us

to give predictions concerning quantities depending explic-
itly on real and imaginary part (or on modulus and phase)
of ff’s. In particular, we can foresee quantities like the ratio
between Pauli and Dirac ff’s and the polarization observ-
ables. In the space-like region, the scattering of polarized
leptons on a proton target gives non-trivial polarization ef-
fects even if the target is unpolarized. The polarization of
the outgoing proton, in this case, depends on the product
of electric and magnetic ff’s, which in this region are real.
In the time-like region, i.e. when we consider the anni-

hilation e+e−→ pp, the complex structure of the ff’s give
rise to special polarization effects: the outgoing protonmay
experience a polarization even if there are no polarized

Fig. 6. Ratio |F p2 (q
2)/F p1 (q

2)|, prediction of the dispersive ap-
proach (lined band) compared with the other models (same
references as Fig. 4)

leptons in the initial state. This polarization will be deter-
mined by the relative phase ofGpE(q

2) andGpM(q
2), that, in

our case, is just the phase Φ(q2) of R(q2).
The time-like polarization vector P has the compo-

nents [11]

Py(q
2) =−

sin(2θ)|R(q2)| sin(Φ(q2))

D
√
τ

,

Px(q
2) =−Pe

2 sin(θ)|R(q2)| cos(Φ(q2))

D
√
τ

, (14)

Pz(q
2) = Pe

2 cos(θ)

D
,

with

D =
1+cos2(θ)+ 1

τ
|τ |2 sin2(θ)

µp
, (15)

where z is the direction of the outgoing proton in the center
of mass system and y is orthogonal to the scattering plane,
Pe is the longitudinal polarization of the initial lepton and
θ is the scattering angle. As already said, the y-polarization
Py does not depend on Pe, while the longitudinal polar-
ization does not depend on the phase Φ. In the pictures
of Fig. 7 our predictions and those of the other considered
models [1, 6, 7, 9, 10], for the components of the polariza-
tion vector are shown. Once again, models which agree in
the space-like region give different predictions in the time-
like region.

4 Conclusions and perspectives

We have used a dispersive approach to construct an expres-
sion for the ratio R(q2), defined in the whole q2 complex
plane, which verifies all the constraints imposed by the
theory (analyticity, asymptotic behavior, etc.) and by the
data available at this moment. The full knowledge of the
function R(q2) allows one to formulate a wide range of pre-
dictions. In particular, in the time-like region, dominance
of the electric form factor near threshold, fading away soon,
as well as an oscillating pattern is predicted (see Fig. 4),
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Fig. 7. Predictions for polarizations Px, Py and Pz in the time-like region (lined bands) compared with those of the other models
(same references as Fig. 4). The plots are for the scattering angle θ = 45◦ and electron polarization Pe = 1

that could be interpreted as a resonance residual, surviv-
ing up to the smoothing expected in the ratio. Also the
ratio between Dirac and Pauli ff’s is predicted as well as
a definite nucleon polarization. The other prediction that
should be confirmed or refuted soon is the presence of the
space-like zero, that we estimate at q2 =−11±2GeV2, in
agreement with [39]. New polarization measurements are
scheduled at Jlab to push down the space-like limit at
q2 �−10GeV2 [40].
Anyway, the measurement of |R(q2)| and of the polar-

izations [see (14)] in the time-like region would have a cru-
cial significance not only to disentangle the models, but
also to gain a rather complete experimental knowledge of
the proton ff’s.
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